Микросхемы для DC/DC-преобразователей от STMicroelectronics
Компания STMicroelectronics выпускает микросхемы для создания неизолированных DC/DC-преобразователей с высокими качественными показателями, требующие небольшого количества внешних компонентов.
Постоянное развитие ИС для DC/DC-преобразователей характеризуется следующими факторами:
- повышением рабочих частот преобразования (максимальная частота преобразования для микросхем STMicroelectronics составляет 1,7МГц), что позволяет резко уменьшить размеры внешних компонентов и минимизировать площадь печатной платы;
- уменьшением размеров корпусов микросхем благодаря высоким частотам преобразования (корпус DFN6D имеет размеры всего 3х3мм);
- повышением удельной плотности выходного тока (корпус DFN6D обеспечивает выходной ток до 2,0А; корпуса DFN8 и PowerSO-8 могут работать при токах до 3,0А);
- повышением КПД и снижением потребляемой мощности при отключенном состоянии, что особенно важно для приборов с автономным питанием.
Компания STM разделяет свои микросхемы для неизолированных DC/DC-преобразователей на две группы. Первая группа имеет рабочую частоту до 1 МГц (параметры сведены в таблицу 1), вторая группа - с частотой преобразования 1,5 и 1,7 МГц (параметры см. в таблице 2). Во вторую группу добавлены также и микросхемы серии ST1S10 с номинальной частотой преобразования 0,9 МГц (максимальная частота преобразования для этих микросхем может достигать 1,2 МГц). Микросхемы серии ST1S10 могут работать при синхронизации от внешнего генератора в диапазоне частот от 400 кГц до 1,2 МГц.
Таблица 1. Микросхемы STMicroelectronics для DC/DC-преобразователей с частотой преобразования до 1 МГцНаименование | Топология | Vвх., В | Vвых., В | Iвых., А | Частота преобразования, МГц | Вход отключения | Корпус |
---|---|---|---|---|---|---|---|
L296 | Step-down | 9...46 | 5,1...40 | 4 | до 200 | Есть | MULTIWATT-15 |
L4960 | Step-down | 9...46 | 5,1...40 | 2,5 | до 200 | Нет | HEPTAWATT-7 |
L4962 | Step-down | 9...46 | 5,1...40 | 1,5 | до 200 | Есть | HEPTAWATT-8, DIP-16 |
L4963 | Step-down | 9...46 | 5,1...40 | 1,5 | 42...83 | Нет | DIP-18, SO-20 |
L4970A | Step-down | 12...50 | 5,1...50 | 10 | до 500 | Нет | MULTIWATT-15 |
L4971 | Step-down | 8...55 | 3,3...50 | 1,5 | до 300 | Есть | DIP-8, SO-16W |
L4972A | Step-down | 12...50 | 5,1...40 | 2 | до 200 | Нет | DIP-20, SO-20 |
L4973D3.3 | Step-down | 8...55 | 0,5...50 | 3,5 | до 300 | Есть | DIP-8, SO-16W |
L4973D5.1 | Step-down | 8...55 | 5,1...50 | 3,5 | до 300 | Есть | DIP-8, SO-16W |
L4974A | Step-down | 12...50 | 5,1...40 | 3,5 | до 200 | Нет | MULTIWATT-15 |
L4975A | Step-down | 12...50 | 5,1...40 | 5 | до 500 | Нет | MULTIWATT-15 |
L4976 | Step-down | 8...55 | 0,5...50 | 1 | до 300 | Есть | DIP-8, SO-16W |
L4977A | Step-down | 12...50 | 5,1...40 | 7 | до 500 | Нет | MULTIWATT-15 |
L4978 | Step-down | 8...55 | 3,3...50 | 2 | до 300 | Есть | DIP-8, SO-16W |
L5970AD | Step-down | 4,4...36 | 0,5...35 | 1 | 500 | Есть | SO-8 |
L5970D | Step-down | 4,4...36 | 0,5...35 | 1 | 250 | Есть | SO-8 |
L5972D | Step-down | 4,4...36 | 1,23...35 | 1,5 | 250 | Нет | SO-8 |
L5973AD | Step-down | 4,4...36 | 0,5...35 | 1,5 | 500 | Есть | HSOP-8 |
L5973D | Step-down | 4,4...36 | 0,5...35 | 2 | 250 | Есть | HSOP-8 |
L5987A | Step-down | 2,9...18 | 0,6...Vвх. | 3 | 250...1000 | Есть | HSOP-8 |
L6902D | Step-down | 8...36 | 0,5...34 | 1 | 250 | Нет | SO-8 |
L6920D | Step-up | 0,6...5,5 | 2...5,2 | 1 | до 1000 | Есть | TSSOP-8 |
L6920DB | Step-up | 0,6...5,5 | 1,8...5,2 | 0,8 | до 1000 | Есть | miniSO-8 |
Таблица 2. Микросхемы для понижающих DC/DC-преобразователей с частотой преобразования от 0,9 до 1,7 МГц
Серия | Наименование | Iвых., А | Vвх.,В | Vвых., В | Частота преобразования, МГц | Вход отключения | Корпус |
---|---|---|---|---|---|---|---|
ST1S03 | ST1S03PUR | 1,5 | 3...16 | 0,8...12 | 1,5 | Нет | DFN6D (3х3 мм) |
ST1S03A | ST1S03AIPUR | 3…5.5 | 0,8...5.5 | 1,5 | Есть | DFN6D (3х3 мм) | |
ST1S03APUR | 1,5 | Нет | |||||
ST1S06 | ST1S06PUR | 2,7…6 | 0,8...5.5 | 1,5 | Есть | DFN6D (3х3 мм) | |
ST1S06A | ST1S06APUR | 1,5 | Нет | ||||
ST1S06xx12 | ST1S06PU12R | 2,7...6 | 1,2 | 1,5 | Есть | DFN6D (3x3 мм) | |
ST1S06xx33 | ST1S06PU33R | 3,3 | 1,5 | Есть | |||
ST1S09 | ST1S09IPUR | 2,0 | 2,7...5,5 | 0,8...5 | 1,5 | Есть | DFN6D (3х3 мм) |
ST1S09PUR | 1,5 | Нет | |||||
ST1S10 | ST1S10PHR | 3,0 | 2,5...18 | 0,8...0,85Vвх. | 0,9 (0,4...1,2)* | Есть | PowerSO-8 |
ST1S10PUR | DFN8 (4x4 мм) | ||||||
ST1S12xx | ST1S12GR | 0,7 | 2,5...5,5 | 1,2...5 | 1,7 | Есть | TSOT23-5L |
ST1S12xx12 | ST1S12G12R | 1,2 | |||||
ST1S12xx18 | ST1S12G18R | 1,8 | |||||
* – в скобках указан диапазон частот преобразования при синхронизации от внешнего генератора. |
Основная часть микросхем для DC/DC-преобразователей из таблицы 1 имеет частоту преобразования до 300 кГц. На таких частотах облегчается выбор индуктивностей на выходе DC/DC, т. к. для рабочих частот микросхем из таблицы 2 (1,5 и 1,7 МГц) на частотные характеристики индуктивностей необходимо обращать особое внимание. На рисунках 1 и 2 в качестве примеров приведены рекомендуемые производителем схемы включения микросхем L5973D (выходной ток до 2,0 А при частоте преобразования 250 кГц) и ST1S06 (выходной ток до 1,5 А при частоте преобразования 1,5 МГц).
Рис. 1. Схема включения L5973D (частота преобразования 250 кГц)
Рис. 2. Схема включения ST1S06 (ток до 1,5 А, частота преобразования 1,5 МГц)
Из рисунков 1 и 2 видно, что микросхемы с относительно низкими частотами преобразования по современным меркам требуют большего количества внешних электронных компонентов, имеющих увеличенные размеры по сравнению с компонентами преобразователей, работающих на частотах более 1 МГц. Микросхемы для DC/DC из таблицы 2 обеспечивают гораздо меньшие размеры печатной платы, но необходимо более внимательно относиться к разводке проводников для уменьшения излучаемых электромагнитных помех.
Некоторые микросхемы позволяют управлять включением и выключением конвертеров благодаря наличию входа INHIBIT. Пример включения таких микросхем приведен на рис. 3. ST1S09 (без входа INHIBIT) и ST1S09I (с входом INHIBIT). В нижней части этого рисунка приведены рекомендуемые значения номиналов резисторов R1 и R2 для формирования выходных напряжений 1,2 и 3,3 В.
Рис. 3. Отличия схем включения ST1S09 (без входа отключения) и ST1S09I (с входом отключения)
При наличии на входе управления VINH высокого уровня напряжения (более 1,3 В) микросхема ST1S09I находится в активном состоянии; при напряжении на этом входе менее 1,4 В DC/DC-преобразователь отключается (собственное потребление при этом составляет менее 1 мкА). Вариант микросхемы без входа управления на выводе 6 вместо входа VINH имеет выход «PG = Power Good» (питание в норме). Формирование сигнала «Power Good» проиллюстрировано на рис. 4. Когда на входе «FB» (FeedBack или вход обратной связи) достигается значение 0,92хVFB, происходит переключение компаратора, и на выходе PG формируется высокий уровень напряжения, информирующий о том, что выходное напряжение находится в допустимых пределах.
Рис. 4. Формирование сигнала «Power Good» на выходе PG микросхемы ST1S09
Эффективность преобразования
на примере микросхем ST1S09 и ST1S09I
Эффективность понижающего DC/DC-преобразователя сильно зависит от параметров интегрированных в микросхемы транзисторов с изолированным затвором (MOSFET), выполняющих роль ключа. Одна из проблем высокочастотных преобразователей связана с током заряда затвора транзистора при управлении им с помощью ШИМ-контроллера. Потери в этом случае практически не зависят от тока в нагрузке. Вторая проблема, снижающая КПД, - рассеиваемая в транзисторе мощность во время переключения из одного состояния в другое (в эти промежутки времени транзистор работает в линейном режиме). Уменьшить потери можно, обеспечив более крутые фронты переключения, но это повышает электромагнитные шумы и помехи по цепям питания. Еще одна причина снижения КПД преобразователя - наличие активного сопротивления «сток - исток» (Rdson). В правильно спроектированной схеме КПД достигает максимального значения при равенстве статических (омических) и динамических потерь. Следует учесть, что выходной выпрямительный диод также вносит свою долю динамических и статических потерь. Некорректно выбранная индуктивность на выходе DC/DC-преобразователя может дополнительно существенно снизить эффективность преобразования, что заставляет помнить и об ее высокочастотных свойствах. В самом плохом случае на высоких частотах преобразования выходной дроссель может потерять свои индуктивные свойства, и преобразователь просто не будет работать.
Компания STMicroelectronics уже много лет выпускает мощные полевые транзисторы и диоды с очень высокими динамическими и статическими характеристиками. Обладание отлаженной технологией производства транзисторов MOSFET позволяет компании интегрировать свои полевые транзисторы в микросхемы для DC/DC-преобразователей и достигать высоких значений КПД преобразования.
На рис. 5 (а, б, в) в качестве примера приведены типовые зависимости эффективности преобразования от некоторых параметров при разных условиях работы. Графики зависимости КПД от величины выходного тока достигают максимальных значений около 95% при токе 0,5 А. Далее спад этих характеристик довольно пологий, что характеризует лишь небольшое увеличение потерь при росте выходного тока до максимального значения.
Рис. 5а. Зависимости КПД для серии ST1S09 от выходного тока
На рис. 5б показаны зависимости КПД от уровня выходного напряжения DC/DC-преобразователей на микросхемах ST1S09 и ST1S09I. С ростом выходного напряжения КПД возрастает. Это объясняется тем, что падение напряжения на транзисторах выходного каскада практически не зависит от выходного напряжения при неизменном выходном токе, поэтому с ростом выходного напряжения процент вносимых потерь будет уменьшаться.
Рис. 5б. Зависимости КПД для серии ST1S09 от выходного напряжения
На рис. 5в приведены зависимости КПД от величины индуктивности на выходе. В диапазоне от 2 до 10 мкГн эффективность преобразования практически не изменяется, что позволяет выбирать величину индуктивности из широкого диапазона номиналов. Конечно, нужно стремиться к максимально возможному уровню индуктивности для обеспечения лучшей фильтрации напряжения пульсаций выходного тока. Понятно, что с ростом значений выходного тока КПД уменьшается. Это объясняется ростом потерь в выходных каскадах DC/DC-преобразователей.
Рис. 5в. Зависимости КПД для серии ST1S09 от индуктивности
Сравнение с микросхемами других производителей
В таблицах 3, 4 и 5 приведены параметры близких по функциональному значению микросхем от других производителей.
Из таблицы 3 видно, что FAN2013MPX - это полный аналог для микросхемы ST1S09IPUR, но у компании STMicroelectronics дополнительно в этой серии есть микросхема ST1S09PUR с наличием выхода «Power Good», что расширяет выбор разработчика.
Таблица 3. Близкие замены микросхем для DC/DC-преобразователей от других производителейПроизводитель | Наименование | Iвых макс., А | Частота преобразования, МГц | Power Good | Совместимость по выводам | Корпус |
---|---|---|---|---|---|---|
STMicroelectronics | ST1S09PUR | 2 | 1,5 | Есть | Есть | DFN3x3-6 |
ST1S09IPUR | Нет | Есть | ||||
Fairchild Semiconductor | FAN2013MPX | 2 | 1,3 | Нет | Есть | DFN3x3-6 |
В таблице 4 приведены функциональные замены (нет совместимости по выводам) от других производителей для микросхем ST1S10. Основное преимущество микросхем ST1S10 - наличие синхронного выпрямления в выходных каскадах, что обеспечивает более высокий КПД преобразования. Кроме того, корпус DFN8 (4х4 мм) имеет меньшие размеры по сравнению с корпусами функционально близких микросхем других производителей. Внутренняя схема компенсации позволяет сократить количество внешних компонентов обвязки микросхем.
Таблица 4. Близкие замены микросхем ST1S10PxR для понижающих DC/DC-преобразователей от других производителейПроизводитель | Наименование | Iвых макс., А | Синхронное выпрямление | Компенсация | Мягкий запуск | Совмести- мость по выводам | Корпус |
---|---|---|---|---|---|---|---|
STMicroelectronics | ST1S10PHR | 3 | Есть | Внутренняя | Внутренний | – | PowerSO-8 |
ST1S10PUR | DFN8 (4x4 мм) | ||||||
Monolithic Power Systems | MP2307/MP1583 | 3 | Есть/Нет | Внешняя | Внешний | Нет | SO8-EP |
Alpha & Omega Semiconductor | AOZ1013 | 3 | Нет | Внешняя | Внутренний | Нет | SO8 |
Semtech | SC4521 | 3 | Нет | Внешняя | Внешний | Нет | SO8-EP |
AnaChip | AP1510 | 3 | Нет | Внутренняя | Внутренний | Нет | SO8 |
В таблице 5 показаны возможные замены для микросхем ST1S12. Основное преимущество микросхем ST1S12 - большее значение максимально допустимого выходного тока: до 700 мА. Микросхема MP2104 фирмы MPS совместима по выводам с микросхемой ST1S12. Микросхемы LM3674 и LM3671 можно рассматривать только в качестве близкой функциональной замены для ST1S112 из-за отсутствия совместимости по выводам.
Таблица 5. Близкие замены микросхем ST1S12 для понижающих DC/DC-преобразователей от других производителейПроизводитель | Наименование | Iвых (макс.), мА | Частота преобразования, МГц | Vвх (макс.), В | Вход отключения | Совмести- мость по выводам | Корпус |
---|---|---|---|---|---|---|---|
STMicroelectronics | ST1S12 | 700 | 1,7 | 5,5 | есть | – | TSOT23-5L |
Monolithic Power Systems | MP2104 | 600 | 1,7 | 6 | есть | есть | TSOT23-5L |
National Semiconductor | LM3674 | 600 | 2 | 5,5 | есть | нет | SOT23-5L |
LM3671 | 600 | 2 | 5,5 | есть | нет | SOT23-5L |
Выбор микросхем для
DC/DC-преобразователей на сайте
Для быстрого поиска электронных компонентов по известным параметрам удобнее всего воспользоваться сайтом http://www.catalog.compel.ru/. Для параметрического поиска на этом сайте настоятельно рекомендуется установить и использовать бесплатную программу для просмотра сайтов (браузер) «Google Chrome». Работа в этом браузере ускоряет поиск в несколько раз. Микросхемы для DC/DC-преобразователей компании STMicroelectronics можно найти на сайте по следующему пути: «Управление питанием» ® «ИМС для DC/DC» ® «Регуляторы (+ключ)». Далее можно выбрать бренд «ST» и активировать фильтр «Склад» для выбора только тех компонентов, которые имеются на складе. Результат этих действий показан на рис. 6. Можно сделать более конкретную выборку по требуемым параметрам, применяя другие фильтры.
Заключение
Особенно важен правильный выбор микросхем для DC/DC-преобразователей в приборах с автономными источниками питания. В некоторых случаях выбор подходящей схемы питания может оказаться трудной задачей, но, уделив достаточно времени проработке и выбору схемы электропитания устройства, можно добиться определенного преимущества над конкурентами за счет более компактного и недорогого решения с более высокой эффективностью преобразования электрической энергии. Микросхемы для DC/DC-преобразователей STMicroelectronics облегчают выбор и позволяют реализовать заложенные в них преимущества при создании конкурентоспособных схем электропитания.
Получение технической информации, заказ образцов, поставка - e-mail: analog.vesti@compel.ru
lolawrisyme пишет... Тут посмотрела 3 и 4 серию, ЭМОЦИЙ ВАГОН ПРОСТО.
21/07/2017 18:33:53 |
Ваш комментарий к статье | ||||